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Developing strategies, or policies, that automatically adapt to changing conditions is called
adaptive decision-making, respectively adaptive policy-making. In this paper, we propose an
iterative computational model-based approach to support adaptive decision-making under
deep uncertainty. This approach combines an adaptive policy-making framework with a
computational approach to generate and explore thousands of plausible scenarios using
simulation models, data mining techniques, and robust optimization. The proposed approach,
which is very useful for Future-Oriented Technology Analysis (FTA) studies, is illustrated on a
policy-making case related to energy transitions. This case demonstrates how the performance
of a policy can be improved iteratively by exploring its performance across thousands of
plausible scenarios, identifying problematic subsets that require improvement, identifying
adaptive high leverage actions with which the adaptive policy needs to be extended until a
satisfying dynamic adaptive policy is found for the entire ensemble of plausible scenarios. The
approach is not only appropriate for energy transitions; it is also appropriate for any long-term
structural and systematic transformation characterized by dynamic complexity and deep
uncertainty.
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1. Introduction

Conceptual, formal, and computational models are commonly used to support decision-making and policy-making [1–5]. The
term ‘model’ refers here to a representation of the most crucial aspects of a system of interest for extracting usable information
[6]. The term ‘decision-making’ is used here for the act or process of making strategies or conscious decisions by an individual or
group of actors, and ‘policy-making’ for the act or process of designing policies by those in charge of designing (public) policy.
Hence, decision-making is more general than, and to some extent includes, policy-making. Although the approach proposed in
this paper applies equally well to long-term decision-making as to policy-making, we will, from here on, consistently refer to
‘policy-making’ and ‘policies’, for our work mainly focuses on policy-making and the case we use to illustrate the approach here
relates to policy-making for stimulating energy transitions.

Although some uncertainty, defined here as any type of aberration from utter certainty [4], is mostly taken into account in
traditional model-based policy-making, it mainly includes what is known and certain. However, uncertainty is prevalent in
complex systems and policy-making related to complex issues. Policy failures are often attributable to the omission of
uncertainties in policy-making [7]. Policies that would be optimal for one particular scenario often fail in most other scenarios.
And policies that are optimal for dynamically complex issues at a particular point in time often fail at other moments in time.
Hence, in case of complex issues under uncertainty, there is a strong need for policies that are designed to adapt over time to new
circumstances and surprises, i.e. adaptive policies, and to perform acceptably well in all circumstances, i.e. robust adaptive policies
[7,8].

In order to develop policies under uncertainty, analysts often use techniques such as exploratory scenarios [9], Delphi surveys
[10], and the analysis of wild cards and weak signals [11]. Characteristic for these techniques is that they aim at charting the
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boundaries of what might occur in the future. Although useful, these traditional methods are not free of problems. Goodwin and
Wright [12, p. 355] argue that “all the extant forecasting methods – including the use of expert judgment, statistical forecasting,
Delphi and prediction markets – contain fundamental weaknesses”. Popper et al. [13] state that the traditional methods “all
founder on the same shoals: an inability to grapple with the long-term's multiplicity of plausible futures”.

Modeling used for policy-making under uncertainty long faced the same inability to grapple with the long-term's multiplicity
of plausible futures. Although testing parametric uncertainty is a standard practice in modeling, and the importance to present a
spectrum of runs under very different hypotheses covering the range of their variation was recognized decades ago [14, p. 149],
modelers were until recently unable to truly overcome this inability due to computational barriers encountered when dealing
with complex systems [8]. Adaptive foresight studies would also hugely benefit from enhanced computational assistance [15].

If uncertainties are not just parametric, but also relate to functional relations, model hypotheses and aspects, model structures,
mental and formal models, worldviews, modeling paradigms, the effects of policies on modeled systems, and the lack of
consensus on the valuation of model outcomes, i.e. in case of ‘deep uncertainty’, then traditional modeling and model-based
policy-making tends to fail. Deep uncertainty pertains according to Lempert et al. [8] to those “situations in which analysts do not
know, or the parties to a decision cannot agree on, (1) the appropriate conceptual models which describe the relationships among
the key driving forces that shape the long-term future, (2) the probability distributions used to represent uncertainty about key
variables and parameters in the mathematical representations of these conceptual models, and/or (3) how to value the
desirability of alternative outcomes”. Deep uncertainty pertains, in other words, from a modelers' perspective to situations in
which a multiplicity of alternative models could be developed for how (aspects of) systems may work, many plausible outcomes
could be generated with these models, and outcomes could be valued in different ways, but one is not able to rank order the
alternative systemmodels, plausible outcomes, and outcome evaluations in terms of likelihood [16]. Hence, all alternative system
models, plausible scenarios, and evaluations require consideration, without exception, and none should be treated as the single
best model representation, true scenario, or correct evaluation. It is clear that there is a strong need for policy-making approaches
that allow for dealing with deep uncertainty, i.e. with many different kinds of uncertainties, multiple models, a multiplicity of
plausible scenarios and evaluations of these scenarios [17].

In this paper, we propose an iterative model-based approach for designing adaptive policies that are robust under deep
uncertainty. The approach starts from a conceptualization of the decision problem and the identification of the key uncertainties.
Next, an ensemble of models is developed that explicitly allows for the exploration of the uncertainties. The behavior of the
ensemble is analyzed and troublesome or advantageous (combinations of) uncertainties are identified, stimulating policy design.
Iteratively, the initial design is fine-tuned until there are no remaining troublesome (combinations of) uncertainties or the policy
is deemed satisfactory based on other grounds. This approach thus explicitly uses the multiplicity of plausible futures for policy
design, addressing one of the shortcomings of many traditional approaches and practices, i.e. the poor utilization of the potential
to be prepared for uncertainties and surprises of future developments [18]. The systemic characteristic of the proposed approach
enables a holistic and systemic exploration of the future, which is of great importance in FTA [19].

The proposed approach is illustrated by means of a long-term policy-making case related to the transition of energy system
toward sustainability. Energy systems are complex, their development over time is dynamically complex, and many aspects
related to these systems and their future developments are deeply uncertain. Current attempts at steering the transition toward a
more sustainable and cleaner configuration are static and may not be very effective and efficient in various futures, i.e. they may
not be robust. This energy transition case is therefore used for illustrating how this approach could be used for policy-making, and
more generally, decision-making under deep uncertainty.

The rest of the paper is organized as follows. Section 2 introduces an adaptive policy-making framework and our Adaptive
Robust Design approach. Section 3 contains the energy transition case and the illustration of our approach to it. Section 4 includes
the discussion. Concluding remarks are made in Section 5.

2. Methodology: the adaptive policy-making framework and the Adaptive Robust Design approach

2.1. The adaptive policy-making framework

Under deep uncertainty, predictive approaches are likely to result in policies that perform poorly. In response, an alternative
policy-making paradigm has emerged. This paradigm holds that, under deep uncertainty, policy-making needs to be dynamic
with built-in flexibility [8,15,20–24]. The initial ideas for this paradigm were developed almost a century ago. Dewey [25]
put forth an argument proposing that policies be treated as experiments, with the aim of promoting continual learning and
adaptation in response to experience over time [26]. Policy learning is also a major issue in evolutionary economics of innovation
[27–29]. Early applications of adaptive policies are also found in the field of environmental management [30,31], where policies
are designed from the outset to test clearly formulated hypotheses about the behavior of an ecosystem being changed by human use
[32]. A similar attitude is also advocated by Collingridge [33] with respect to the development of new technologies. Given ignorance
about the possible side effects of technologies under development, he argues that one should strive for correctability of decisions,
extensivemonitoring of effects, and flexibility. More recently, Brans et al. [34] andWalker et al. [24] developed a structured, stepwise
approach for dynamic adaptation.Walker et al. [24] advocate that policies should be adaptive: one should take only those actions that
are non-regret and time-urgent and postpone other actions to a later stage. In order to realize this, it is suggested that a monitoring
system and a pre-specification of responses when specific trigger values are reached should complement a basic policy. The resulting
policy is flexible and adaptive to the future as it unfolds.
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Fig. 1 shows a framework that operationalizes the high level outline of adaptive policy-making. In Step I, the existing
conditions of an infrastructure system are analyzed and the goals for future development are specified. In Step II, the way in which
this is to be achieved is defined. This basic policy is made more robust through four types of actions, which are specified in Step III,
namely by mitigating actions to reduce the certain adverse effects of a policy; hedging actions to spread or reduce the negative
impacts of uncertain adverse effects of a policy; seizing actions to profit from opportunities; and shaping actions to reduce the
likelihood that an external condition or event that could make the policy fail will occur, or to increase the chance that an external
condition or event that could make the policy succeed will occur. Even with the actions taken in Step III, there is still the need to
monitor the performance of the policy and take action if necessary. This is called contingency planning, and is implemented in
Step IV. Signposts specify information that should be tracked in order to determine whether the policy is progressing toward
success. Critical values of signpost variables (triggers) are chosen, beyond which actions should be implemented to ensure that
the policy keeps moving the system at a proper speed in the right direction. There are four different types of actions that can be
triggered by a signpost: defensive actions are taken to reinforce the basic policy, preserve its benefits, or meet outside challenges
in response to specific triggers that leave the basic policy unchanged; corrective actions are adjustments to the basic policy;
capitalizing actions aim at taking advantage of opportunities that improve the outcomes of the basic policy; and a reassessment
of the policy is initiated when the analysis and assumptions critical to the policy's success have lost validity.

In a recent special issue of Technological Forecasting and Social Change on adaptivity in decision-making, the guest editors
conclude that “Adaptive policy-making is a way of dealing with deep uncertainty that falls between too much precaution and
acting too late. While the need for adaptation is increasingly acknowledged, it is still a developing concept, and requires the
further development of specific tools and methods for its operationalization” [7]. More specifically, for adaptive policy-making to
become a useful policy-making approach, it is necessary to specify in more depth how the various steps could be carried out and
which methods and techniques could be employed in each of the steps. That is, adaptive policy-making needs to move from being
a high level concept captured in a flowchart, to being a detailed policy-making approach. A possible qualitative approach for

Fig. 1. Steps of the Adaptive Policy-Making Framework.
Source: [1].
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operationalizing the Adaptive Policy-Making Framework is through structured workshops [35]. A possible quantitative
approach for operationalizing the Adaptive Policy-making Framework is by using Exploratory Modeling and Analysis [36–38].
This computational approach, which we call the Adaptive Robust Design (ARD) approach, is proposed and illustrated below.

2.2. The Adaptive Robust Design approach

EMA is a methodology that uses computational experiments to combine plausible models and other uncertainties in order to
generate a large variety of scenarios that are in turn used to analyze complex uncertain systems, support the development of
long-term strategic policies under deep uncertainty, and test policy robustness over. EMA could also be used to develop adaptive
policies under deep uncertainty since it allows for generating and exploring a multiplicity of plausible scenarios by sweeping
multi-dimensional uncertainty space. EMA could then be used to identify vulnerabilities and opportunities present in this
ensemble of scenarios, paving the way for designing targeted actions that address vulnerabilities or seize opportunities. The
efficacy of the resulting policies could then be tested over the entire ensemble of scenarios. Moreover, EMA could be used to
identify conditions under which changes in a policy are required. That is, it could help in developing a monitoring system and its
associated actions. It thus appears that EMA could be of use in all adaptive policy-making steps.

Hence, our Adaptive Robust Design (ARD) approach starts along the lines of the EMAmethodologywith: (1) the conceptualization
of the problem, (2) the identification of uncertainties (and certainties), and (3) the development of an ensemble ofmodels that allows
generating many plausible scenarios. It then proceeds with: (4) the generation of a large ensemble of scenarios, (5) the exploration
and analysis of the ensemble of scenarios obtained in Step 4 in order to identify troublesome and/or promising regions across
the outcomes of interest, as well as the main causes of these troublesome and promising regions, (6) the design – informed by the
analysis in Step 5 – of policies for turning troublesome regions into unproblematic regions, (7) the implementation of the candidate
policies in the models, (8) the generation of all plausible scenarios, subject to the candidate policies, (9) the exploration and analysis
of the ensemble of scenarios obtained in Step 8 in order to identify troublesome and/or promising regions across the outcomes
of interest, as well as the main causes of densely concentrated troublesome and/or promising regions, etc. Steps 5–8 should be
iterated until an adaptive policy emerges with robust outcomes (see in Fig. 2).

The identification of troublesome and/or promising regions is crucial for this approach to be efficacious. These sub-regions of
the uncertainty space represent combinations of uncertainties that either have highly negative or highly positive effects. The
troublesome regions and the promising regions correspond respectively to vulnerabilities and opportunities in the adaptive
policy-making framework. If uncertainties have a positive or negative effect across all the regions, then they are typically best
addressed in the basic policy or through actions aimed at enhancing the robustness of the basic policy, while uncertainties of
relevance only in particular regions are typically better handled through monitoring and associated corrective, defensive, or
capitalizing actions.

In order to identify the troublesome and promising regions, we use an adapted version of the Patient Rule Induction Method
(PRIM) [39–42] – one that can deal with categorical and continuous uncertainties – which allows distilling uncertainty sub-spaces
with high positive match ratios for a pre-specified binary classification function and with high relative masses (above a pre-specified
threshold relative to the total scenario space). PRIM is particularly valuable for discovering troublesome subspaces of the multi-
dimensional uncertainty space, and hence, for developing specific adaptive actions for adaptive policies. PRIM has been used in
combination with EMA by other authors [40–42]. Those applications, however, aimed at translating the troublesome regions back
to qualitative scenarios that could then be presented to a decision maker. Here, the troublesome and promising regions identified
with PRIM are used directly for designing adaptive policies and the corresponding monitoring systems.

The approach for developing adaptive policies as presented here shares characteristics with ‘Robust Decision Making (RDM)’
[8,41,43,44]. Like in RDM, we emphasize the iterative character of policy formation. However, by connecting this to a particular
framework for the design of adaptive policies, our approach is more specific on the various ways in which uncertainties can be
handled through policies. Related to this, the approach focuses not solely on the negative side of the uncertainties, but also

Fig. 2. Iterative Adaptive Robust Design process.
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explicitly considers the opportunities that uncertainties can present. Another difference is that RDM relies on the notion of regret
and uses a modified version of the expected utility framework [44], our approach does not entail such a stance. Finally, in the
exemplary paper on RDM [41], there is a need for significant computational power due to sampling techniques used, whereas
through the utilization of computationally more efficient methods such as PRIM, more efficient sampling techniques can be
employed.

3. Illustration: Adaptive Robust Design in case of energy transitions

In order to illustrate how the ARD approach helps in designing adaptive policies, we present an illustrative case study about
developing an adaptive policy for stimulating the transition of the electric power generation sector toward a more sustainable
one. Transitions are large systematic societal transformations that, in general, are characterized by long periods over which
they play out. Energy transitions are characterized by many deep uncertainties related to transition mechanisms, to the various
competing technologies, and to human and organizational decision-making [45]. Here we focus on the competition between
technologies.

3.1. Introduction to the energy transition case

In order to achieve a sustainable future, there is a strong need for a transition inmany domains, including transportation, housing,
water and energy [46]. Energy is a crucial domain inwhich a fundamental transition toward clean generation technologies is desirable
[47] for environmental and security reasons. The current energy system ismainly dominated by fossil energy generation technologies
which are being challenged by rapidly evolving emerging technologies. Although new sustainable energy technologies are entering
themarket, their contribution to the total amount of energy generation is still relatively small. Transition of the energy system toward
sustainability depends on the developments related to new technologies.

Such developments are typically characterized by non-linearity and uncertainty regarding technological characteristics and
market adoption [48,49]. For example, precise lifetimes of technologies are not known and expected values are used in planning
decisions. Also, since the installation of new capacity mostly happens in large chunks, planning is complex and happens under
uncertainty, and construction times are open to surprises affecting the actual completion time. Other important uncertainties are
related to learning effects on costs and technological performance. Costs and technological performance, and expectations related
to them, in turn influence the adoption and survival of technologies during the transition. These uncertainties play a crucial role
and need to be taken into account when analyzing the dynamics of energy transitions and when trying to influence them by
means of adaptive policies.

Table 1
Overview of the uncertainties.

Uncertainties Description Type Range or categories

Initial capacities Starting value of the installed capacity
of a technology

Parametric Varying between 1 and 16,000 MW for
different
technologies

Lifetimes Expected lifetime of a technology Parametric Varying between 15 and 50 years for
different
technologies

Delay orders of
lifetimes

Orders of the decommissioning delays Categorical 1st, 3rd, 10th, 1000th

Initial
decommissioned
capacities

Initial values of the total decommissioned capacities
of the technologies

Parametric Varying between 10 and 10,000,0000 MW
for different technologies

Planning and
construction
periods

Average period for planning and constructing new
capacity for a technology

Parametric Varying between 1 and 5 years for different
technologies

Progress ratios Ratio for determining cost reduction due to learning
curve

Parametric Varying between 70% and 95% for four
different
technologies

Initial costs Initial investment cost of new capacity of a particular
technology

Parametric Varying between €500,000 and €10 million
per MW

Economic growth Economic growth rate Parametric Randomly fluctuating between −0.01 and
0.035
(smoothed concatenation of 10-year
random growth values)

Investment
preference
structures

Preference criteria and weights for investing in new
capacity of each of the technologies

Parametric weights and
categorical switches

Preference for (more) familiar technologies
[called here the
Preference ‘Against unknown’]; preference
for (higher)
expected progress; preference for (higher)
‘CO2 avoidance’;
preference for (lower) ‘Cost per MWe’
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In order to explore the problem and the uncertainties of energy transitions, a System Dynamics [50,51] model developed for
exploring the dynamics of energy system transitions [3] is used in this study. The SD model incorporates, at a high level of
aggregation, the main structures driving the competition among four energy technologies. Technology 1 represents old dominant
non-renewable technologies. The other three technologies are at the start of the simulation relatively new, more sustainable, and
more expensive. Since fast and relatively simple models are needed for EMA, the more sustainable technologies (2, 3 and 4) are
considered to be generic for the sake of simplicity. The four technologies compete with each other in order to increase their share
of energy generation, driven by mechanisms such as total energy demand, investment costs and the effect of learning curves on
costs. A more detailed explanation of the model can be found in [3]. And the uncertainties taken into consideration and their
corresponding ranges are displayed in Table 1.

3.2. The ARD process illustrated

3.2.1. No policy
In order to explore the behavior of the simulation model over a wide variety of conditions, we utilize a workbench that is

written in Python [52] which controls Vensim through its Dynamic Link Library [53,54]. Using Latin Hypercube Sampling (LHS)
[55], a ‘no policy’ ensemble of 10,000 simulations was generated. In the model used, at least one preference criterion must be
activated (switch value equal to 1) for each run, else the run needs to be excluded: out of 10,000 simulations, 651 caseswere excluded
for that reason. Fig. 3 shows the results of 1000 randomly selected cases out of the remaining 9349 runs in the post-processed ‘no
policy’ ensemble. The figure shows the behavior over time for the outcome indicator ‘fraction of new technologies of total energy
generation’ as well as the Gaussian Kernel Density Estimates (KDEs) [56] of the end states.

These results show that the fraction of new technologies seems to be concentrated around 60% of total generation capacity by
the simulated year 2100, which means that over the 100 year simulation time, the fraction of new technologies remains below
60% for about half of the runs. If the goal is an energy transition toward sustainability, then this ensemble as a whole is unlikely to
be acceptable and requires policy intervention. Hence, we use PRIM to identify relatively large regions in the uncertainty space
that generate relatively high concentrations of undesirable results, and the combinations of uncertainties and their values that
lead to these regions. To this end, the end states for the total fraction of new technologies are classified as 1 if the fraction is below
0.60 and 0 otherwise. Using PRIM, three troublesome uncertainty sub-spaces that contain at least 70% of the cases of class 1
are identified. These regions are characterized by specific combinations of uncertainties: Table 2 shows the full range of the
uncertainties (first row), and the uncertainty ranges for each of these troublesome regions (other rows). Since PRIM seeks for
regions in the uncertainty space with specific characteristics, not all of the uncertainties but only the uncertainties that determine
the sub-spaces are shown. The lower range of the ‘lifetime of Technology 1’ is relevant for all three sub-spaces, i.e. the adoption of
new sustainable technologies is hampered – in combination with the other uncertainties of the sub-spaces – by longer lifetimes of
the dominant technology. Although a low performance of Technology 2 on the ‘CO2 avoidance’ criterion, a high performance of
Technology 1 on the ‘expected cost per MWe’ criterion, a short lifetime for Technology 3, and a short planning and construction
time for Technology 1 also hinder the transition toward sustainability, none of these uncertainties and their ranges are as
unambiguous as the lifetime of Technology 1 (for all regions, not the lower ranges). Shortening the lifetime of Technology 1
therefore seems to be a promising basic policy, i.e. a policy that will be implemented in any case from the start.

3.2.2. Basic policy
Shortening the lifetime of Technology 1 could be achieved by increasing its decommissioning, for as long as the fraction of new

technologies remains below a particular target fraction, say 0.8, assuming that 80% is a reasonable target for the fraction of
sustainable technologies. To assess the performance of this basic policy, the same 9349 experiments used for exploring the no
policy case are now executed with the basic policy. Fig. 4 displays the envelopes spanning the upper and lower limits of the total

Fig. 3. Total fraction of new technologies for the ‘no policy’ ensemble.
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fraction of new technologies for the no policy ensemble (in blue) and the basic policy ensemble (in green) as well as the KDEs of
the end states of all runs in the respective ensembles.

The upward shift of the sustainable fraction in Fig. 4 means that the need for new capacity resulting from the additional
decommissioning of Technology 1 is to a large extent filled by new technologies. Hence, the basic policy stimulates the transition
from Technology 1 to new technologies, at least to some extent. Although there is an improvement in terms of the fraction of
sustainable technologies, there is still a room for further improvement. Many runs still end below the 60% new technologies
threshold. For this reason, we applied PRIM once more with the same classification rule in order to identify troublesome regions
for the basic policy.

The basic policy aimed at increasing the decommissioning of the dominant technology, since all PRIM boxes indicated
decreasing the negative effect of the lifetime of Technology 1 would help to increase the fraction of new technologies. The second
iteration PRIM results show there are three very different troublesome regions in the basic policy ensemble: the first region
relates to the performance of the technologies on the CO2 avoidance criterion, the second region relates to the underperformance
of Technology 2, and the third region is determined by uncertainties related to economic growth and expected progress.

3.2.3. Contingency planning
To redesign and improve the basic policy, it is necessary to analyze the characteristics of the PRIM regions to identify the

vulnerabilities that generate the undesirable outcomes. The main drivers of the first region are the CO2 avoidance performance
values for Technologies 1, 2, and 3. If the CO2 avoidance performance of the dominant technology is high, while it is low for the
new technologies, then transition toward new technologies is limited. Additionally, the region shows that higher performance for
expected cost per MWe of the dominant technology also limits the transition. This outcome is not undesirable: it means that the
old dominant technology outperforms the other technologies in terms of expected investment costs and CO2 avoidance, which, in
our case (not considering long term security of supply), serves the same goal as the transition. Hence, it is not necessary to design
a strategy for this region; this uncertainty sub-space consists of acceptable scenarios in terms of CO2 avoidance even though the
transition to new technologies is limited.

The second region is mainly driven by uncertainties related to Technology 2. A shorter lifetime, lower performance of CO2

avoidance, and longer planning and construction period for Technology 2, lead to low fractions of sustainable technologies. The
results indicate that Technology 1 becomesmore preferable than Technology 2,which is initially themain alternative to Technology 1.
In this situation, a reasonable defensive action would be to focus on the other sustainable technologies, in order to promote the
transition toward these technologies instead. To address this vulnerability, a signpost tracking the progress of Technologies 2, 3 and 4
could be used. The pointwhere the performance of Technology 3 or 4 equals the performance of Technology 2 could be the trigger for

Table 2
PRIM results for the no policy ensemble.

Preference against
unknown

Average planning
and construction
period Tech. 1

Lifetime of
Technology 1

Lifetime of
Technology 3

CO2 avoidance
performance of
Technology 2

Expected cost
per MWe
performance of
Technology 1

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Original 2 5 1 5 30 50 15 40 1 5 1 2
Region1 2 5 1 5 34.4 50 15 37.5 1 4.2 1.1 1.8
Region2 2 5 1 4.8 33.7 50 15 37.5 1 4.4 1.1 2
Region3 2.9 4.9 1 4.5 32.6 50 16.3 40 1 5 1.2 2

Fig. 4. Comparison of no policy and basic policy for total fraction of new technologies.
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this signpost. Using this trigger, the corrective action would be to stop investing in Technology 2 and to shift investments to
Technologies 3 and 4 instead. So, we modified our basic policy by adding the monitoring and corrective actions and reran the
experiments. Although there is not a clear improvement in terms of total fraction of new technologies, the installed capacities of
Technologies 3 and 4 increase. Thismeans that the defensive action developed for the second region served its purpose by steering the
commissioning toward Technologies 3 and 4.

The third region shows that certain combinations of economic growth factors and preference for the expected progress criterion
may also hinder the energy transition. Each of the economic growth parameters indicated in the third region corresponds to the
value of economic development for ten years and together they constitute the overall behavior of economic development over
100 years. Although it is difficult to interpret the combination of these economic growth parameters, one could conclude that certain
combinations of these parameters hinder the breakthrough of new technologies. Since the way in which economic development is
represented in this model creates cyclic behavior, a possible corrective action could be to partly decouple the adoption of new
technologies from the economic cycle with the help of subsidies and additional commissioning of new technologies. For this purpose,
we use the investment cost of new technologies as a signpost. A possible defensive action would be to subsidize one or more
sustainable technologies for some time to make them competitive. Hence, the costs of Technologies 2, 3 and 4 are monitored over
time and when their costs are close enough to the cost of the dominant technology, a 20% cost reduction of the new technologies is
triggered over a period of 10 years. To further address this vulnerability, we also add a hedging action to the basic policy in the formof
additional commissioning of Technologies 3 and 4 in their early years. These actions together aim at making the sustainable
technologies more cost efficient once their costs are reasonably affordable levels, and to promote the transition toward new
technologies in their early years. The economic action is successful in promoting sustainable technologies and increasing the total
fraction after the first 10 years (around 2020). The adoption of the new technologies in later years is also higher than under the
basic policy, suggesting that these cost reductions are effective.

To improve the performance of the adaptive policy even further, the triggers used for adaptivity were optimized using robust
optimization [57–59]. Using the trigger values optimized over the entire ensemble for the actions previously discussed significantly
improves the adaptive policy. Fig. 5 shows a comparison in terms of the total fraction of new technologies of the ‘no policy’ ensemble,
the ‘basic policy’ ensemble, and this ‘adaptive policy’ ensemble over the same uncertainty space, i.e. using the same experimental
design.

It shows that the ‘adaptive policy’ ensemble, although hardly improving the extremes, outperforms the ‘basic policy’ and ‘no
policy’ ensembles on this key performance indicator: the adaptive policy is a better guarantee for a successful transition under
deep uncertainty, without forcing a transition to new technologies upon situations that do not require a transition to take place
(e.g. in case of a cheap and environmentally friendly dominant technology) or for which a transition would be overly expensive.

Fig. 5. Comparison of no policy, basic policy and adaptive policy for total fraction of new technologies.
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4. Discussion and implications for Future-Oriented Technology Analysis (FTA)

In this paper we proposed an iterative computational approach for designing adaptive policies that are robust under deep
uncertainty. The proposed approach has been illustrated on an energy transition case. Several of our findings warrant further
discussion.

An important issue relates to the hedging action and the monitoring of the costs. Fig. 5 shows that these actions are effective in
the early years, but lose their effect after 2020 due to the time-restricted nature of the hedging action. However, it is not possible
to conclude that this reduction in effectiveness is caused only by the nature of the hedging action. To reveal the underlying
mechanism leading to a decline after 2020, it is necessary to identify those runs that improve around 2020 and then collapse. A
modified classification in combination with PRIM could be utilized for such an analysis.

This study also has implications for Future-Oriented Technology Analysis (FTA). Transitions represent large structural and
systematic transformations and the transition toward a more sustainable energy generation system is a grand societal challenge.
This study shows how EMA and the proposed iterative Adaptive Robust Design approach can be employed for shaping and
steering transitions toward more sustainable energy systems. Thus, this study is in line with the purpose of FTA projects that aim
at developing long-term, adaptive, and robust policies for socio-economic and technological changes (i.e. energy transitions). This
study illustrated the potential of EMA for FTA as suggested by Porter et al. [17].

Uncertainties and surprises are inevitable and intrinsic to FTA projects. The adequate handling of uncertainty is thus of prime
importance. Using FTA for planning for action is one area where the handling of uncertainty is crucial. Here, the goal should be to
aim for plans that are adequate across the multiplicity of plausible future worlds. This paper shows a way in which EMA can be
utilized to support the iterative development and refinement of adaptive policies in light of a clear exploration of the multiplicity
of plausible futures. That is, the paper offers a new technique for FTA practitioners in their work of supporting long-term planning.

Another important challenge inmany FTAprojects is supporting amulti-actor process. Different perspectives, differentworldviews
or different mental models of various stakeholders are usually the norm in FTA projects and may result in situations where the
results of FTA projects are contested by one or more of the actors involved in the process if the diversity of views and/or actors is
not properly cared for. Here, EMA can be of use, since EMA allows incorporating a multiplicity of perspectives, worldviews,
mental models or quantitative models. That is, EMA could be used to support an inclusive modeling process from the start,
where different beliefs about how a system functions, or which aspects of a problem are important, are explicitly taken into
account and assessed for their consequences.

5. Conclusions

Wehave proposed an iterativemodel-based approach for developing adaptive policies under uncertainty. The proposed approach,
whichwe call Adaptive Robust Design, has been illustrated through a case about the structural and systemic transformation of energy
generation systems toward a more sustainable future. Our analysis shows that ARD can be used to develop long-term, adaptive and
robust policies for grand societal transformations. Furthermore, this study has shown that Exploratory Modeling and Analysis can be
utilized successfully in the context of adaptive policy-making. The iterative approach for designing robust adaptive policies helps to
identify and address both vulnerabilities and opportunities, resulting in a dynamic adaptive policy that improves the extent to which
the energy system transits to a more sustainable functioning.

There is a growing awareness about the need for handling uncertainty explicitly in decision-making. The recent financial and
economic woes have rekindled a wider interest in approaches for handling uncertainty. However, there is also a certain degree of
skepticism about the extent towhichmodels can be used for decision-making under uncertainty. In addition, all the extant forecasting
methods contain fundamental weaknesses and struggle deeply in grapplingwith the long-term's multiplicity of plausible futures. The
presented case illustrates howmodels can be used to support decision-making, despite the presence of a wide variety of quite distinct
uncertainties and amultiplicity of plausible futures. A central idea in this approach is to use the availablemodels differently, instead of
using them in a predictive manner and ignoring many uncertainties. The models were used here to explicitly explore a plethora of
uncertainties in order to assess the implications of these uncertainties for decision-making. The presented approach can easily be
expanded ormodified. For example, we used PRIM for the identification of both opportunities and vulnerabilities. Other rule induction
methods, such as decision tree induction, Classification and Regression Trees (CART) [60], could be equally well applied to this task.
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