#Bacterial genome scalpel can identify key gene regions Arraybacteria use CRISPR-Cas as a self-cleansing defense mechanism and immune system against unwanted DNA invaders such as viruses, plasmids and other mobile genetic elements, says Rodolphe Barrangou, associate professor of food science at NC State and a co-corresponding author of the paper. Although CRISPR-Cas is being engineered to edit DNA sequences in cells of numerous organisms--including plants, animals and humans--much is to be learned about how bacteria cope with DNA self-targeting events, or'autoimmunity.''Arrayarraycrispr-Cas eliminated the four regions, including the region containing the milk-utilization gene.''Once that region was gone, the bacteria could no longer preserve milk, yet the cells were still alive, 'Selle said.''That result showed that this area was expendable and not essential to bacterial survival when not growing in milk.''That result also contained a surprise for the researchers. Cutting out one of the islands--the one that contained the milk-utilization genes--reduced the genome by about 5 percent. Overall, elimination of all four areas reduced the genome by 7 percent.''We did not expect that magnitude of reduction in a relatively small genome, 'Barrangou said.''When you use pinpointed targeting of a specific portion of the genome, you expect a smaller deletion to occur.''The researchers say that that the same techniques can be used as a template to study essential and nonessential genomic regions in any bacterium of interest --and can perhaps be used to target unsavory antibiotic resistance genes in bacterial pathogens and occasionally in beneficial bacteria.''Bacteria are littered with genes that are unknown--it's like genetic dark matter, 'Selle said.''Now we can learn more about what these elements provide and remove any undesirable trait.''''This work represents a stunning discovery of the grand and expansive genome rearrangements that occurred in beneficial bacteria that evolved to preserve foods, and now present genomic tools that can be used to expand their fermentation properties in the future, 'Klaenhammer said.''With our ever-increasing awareness of the important role played by beneficial microbes, this opens new avenues for understanding how manufacturing workhorses operate, and how valuable bacteria evolve.''The research was funded by NC State start-up funds, the North carolina Agriculture Foundation and Dupont Nutrition and Health h
Overtext Web Module V3.0 Alpha
Copyright Semantic-Knowledge, 1994-2011