futurity_medicine 00180.txt

#Your home s microbiome moves with you In addition to their families and pets people live with millions and millions of bacteria. New research offers a detailed analysis of the microbes that live in houses and apartments. The results published in Science shed light on the complicated interaction between humans and the microbes that live on and around us. Mounting evidence suggests that these microscopic teeming communities play a role in human health and disease treatment and transmission. We know that certain bacteria can make it easier for mice to put on weight for example and that others influence brain development in young mice says Argonne National Laboratory microbiologist Jack Gilbert who led the study. We want to know where these bacteria come from and as people spend more and more time indoors we wanted to map out the microbes that live in our homes and the likelihood that they will settle on us. They are essential for us to understand our health in the 21st century he says. The Home Microbiome Project followed seven families which included eighteen people three dogs and one cat over the course of six weeks. The participants in the study swabbed their hands feet and noses daily to collect a sample of the microbial populations living in and on them. They also sampled surfaces in the house including doorknobs light switches floors and countertops. Then the samples came to Argonne where researchers performed DNA analyses to characterize the different species of microbes in each sample. We wanted to know how much people affected the microbial community on a house s surfaces and on each other Gilbert says. They found that people substantially affected the microbial communities in a houseâ when three of the families moved it took less than a day for the new house to look just like the old one microbially speaking. Regular physical contact between individuals also matteredâ in one home where two of the three occupants were in a relationship with one another the couple shared many more microbes. Married couples and their young children also shared most of their microbial community. Within a household hands were the most likely to have similar microbes while noses showed more individual variation. Adding pets changed the makeup as well Gilbert saysâ they found more plant and soil bacteria in houses with indoor-outdoor dogs or cats. In at least one case the researchers tracked a potentially pathogenic strain of bacteria called Enterobacter which first appeared on one person s hands then the kitchen counter and then another person s hands. This doesn t mean that the countertop was definitely the mode of transmission between the two humans but it s certainly a smoking gun Gilbert says. It s also quite possible that we are exposed routinely to harmful bacteriaâ living on us and in our environmentâ but it only causes disease when our immune systems are disrupted otherwise. Home microbiome studies also could potentially serve as a forensic tool Gilbert says. Given an unidentified sample from a floor in this study he says we could easily predict which family it came from. The research also suggests that when a person (and their microbes) leaves a house the microbial community shifts noticeably in a matter of days. You could theoretically predict whether a person has lived in this location and how recently with very good accuracy he says. Researchers used Argonne s Magellan cloud computing system to analyze the data; additional support came from the University of Chicago Research Computing Center. The Alfred P. Sloan Foundation funded the study. Additional funding also came from the National institutes of health the Environmental protection agency and the National Science Foundation. Additional researchers contributed to the study from Argonne University of Chicago Washington University in St louis and the University of Colorado at Boulder. Source: University of Chicago You are free to share this article under the Creative Commons Attribution-Noderivs 3. 0 Unported license i


< Back - Next >


Overtext Web Module V3.0 Alpha
Copyright Semantic-Knowledge, 1994-2011