Dna nanostructure (32) | ![]() |
Metal nanostructure (3) | ![]() |
Nanobubble (4) | ![]() |
Nanocage (12) | ![]() |
Nanocapsule (25) | ![]() |
Nanocomposite (87) | ![]() |
Nanocube (23) | ![]() |
Nanofiber (112) | ![]() |
Nanofibre (6) | ![]() |
Nanoflake (7) | ![]() |
Nanofluid (9) | ![]() |
Nanoframe (10) | ![]() |
Nanohole (10) | ![]() |
Nanolattice (3) | ![]() |
Nanolayer (5) | ![]() |
Nanomesh (37) | ![]() |
Nanoneedle (12) | ![]() |
Nanopillar (20) | ![]() |
Nanopore (106) | ![]() |
Nanoribbon (83) | ![]() |
Nanoring (4) | ![]() |
Nanorod (69) | ![]() |
Nanosheet (85) | ![]() |
Nanostructure (323) | ![]() |
Nanotube (863) | ![]() |
Nanowire (491) | ![]() |
and thus create vapor nanobubbles, Zharov said. Fast expansion and collapse of these nanobubbles significantly increases the sound10-50 fold
and mechanically kills CTCS so that it requires just a few laser pulses or even a single pulse without harmful effects on normal cells.
and then eradicate the CTCS by well-timed therapy including nanobubble-based treatment. A similar approach can be used to monitor the effectiveness of the different types of treatment for cancer by counting the CTCS before, during and after therapy.
Zharov team has demonstrated already that laser-induced nanobubbles significantly decrease the level of CTCS, leading to a decrease in the chances of cancer spreading to other organs. urther study could determine
< Back - Next >
Overtext Web Module V3.0 Alpha
Copyright Semantic-Knowledge, 1994-2011