#Ceramic converter tackles solar cell problem Stanford university rightoriginal Studyposted by Mark Shwartz-Stanford on October 21 2013coating a solar cell component in ceramics makes it more heat resistant which could boost overall efficiency of the cells say researchers. The component converts heat from the sun into infrared light which can be absorbed by solar cells to make electricity a technology known as thermophotovoltaics. Unlike earlier prototypes that fell apart before temperatures reached 2200 degrees Fahrenheit (1200 degrees Celsius) the new thermal emitter remains stable at temperatures as high as 2500 F (1400 C). his is a record performance in terms of thermal stability and a major advance for the field of thermophotovoltaicssays Shanhui Fan a professor of electrical engineering at Stanford university. Fan and his colleagues at the University of Illinois-Urbana Champaign (Illinois) and North carolina State university collaborated on the project. Their results are published in the journal Nature Communications. A typical solar cell has a silicon semiconductor that absorbs sunlight directly and converts it into electrical energy. But silicon semiconductors only respond to infrared light. Higher energy light waves including most of the visible light spectrum are wasted as heat while lower energy waves simply pass through the solar panel. n theory conventional single-junction solar cells can only achieve an efficiency level of about 34 percent but in practice they don t achieve thatsays study co-author Paul Braun a professor of materials science at Illinois. hat s because they throw away the majority of the sun s energy. hermophotovoltaic devices are designed to overcome that limitation. Instead of sending sunlight directly to the solar cell thermophotovoltaic systems have an intermediate component that consists of two parts: an absorber that heats up when exposed to sunlight and an emitter that converts the heat to infrared light which is beamed then to the solar cell. ssentially we tailor the light to shorter wavelengths that are ideal for driving a solar cellfan explains. hat raises the theoretical efficiency of the cell to 80 percent which is quite remarkable. o far thermophotovoltaic systems have achieved only an efficiency level of about 8 percent Braun notes. The poor performance is largely due to problems with the intermediate component which is made typically of tungsten##an abundant material also used in conventional light bulbs. ur thermal emitters have a complex three-dimensional nanostructure that has to withstand temperatures above 1800 F 1000 C to be practicalbraun says n fact the hotter the better. n previous experiments however the 3-D structure of the emitter was destroyed at temperatures of around 1800 F (1000 C). To address the problem Braun and his Illinois colleagues coated tungsten emitters in a nanolayer of a ceramic material called hafnium dioxide. The results were dramatic. When subjected to temperatures of 1800 F (1000 C) the ceramic-coated emitters retained their structural integrity for more than 12 hours. When heated to 2500 F (1400 C) the samples remained thermally stable for at least an hour. The ceramic-coated emitters were sent to Fan and his colleagues at Stanford who confirmed that devices were still capable of producing infrared light waves that are ideal for running solar cells. hese results are unprecedentedsays former Illinois graduate student Kevin Arpin the lead author of the study. e demonstrated for the first time that ceramics could help advance thermophotovoltaics as well other areas of research including energy harvesting from waste heat high-temperature catalysis and electrochemical energy storage. raun and Fan plan to test other ceramic-type materials and determine if the experimental thermal emitters can deliver infrared light to a working solar cell. e ve demonstrated that the tailoring of optical properties at high temperatures is possiblebraun says. afnium and tungsten are abundant low-cost materials and the process used to make these heat-resistant emitters is established well. opefully these results will motivate the thermophotovoltaics community to take another look at ceramics and other classes of materials that haven t been considered. tanford s Global climate and Energy project and the Department of energy s Light-Material Interactions in Energy conversion Center supported the work along with the National Science Foundation and the Research Triangle Solar fuels Institute. Source: Stanford Universit
Overtext Web Module V3.0 Alpha
Copyright Semantic-Knowledge, 1994-2011