#Climate change and wildfireconcerns continue to grow about the effects of climate change on fire. Wildfires are expected to increase 50 percent across the United states under a changing climate over 100 percent in areas of the West by 2050 as projected by some studies. Of equal concern to scientists and policymakers alike are the atmospheric effects of wildfire emissions on climate. A new article published in the journal Forest Ecology and Management by U s. Forest Service scientists synthesizes recent findings on the interactions between fire and climate and outlines future research needs. Authored by research meteorologists Yongqiang Liu and Scott Goodrick from the Forest Service Southern Research Station (SRS) and Warren Heilman from the Northern Research Station the article homes in on the effect of emissions from wildfires on long-term atmospheric conditions. While research has focused historically on fire-weather interactions there is increasing attention paid to fire-climate interactions says Liu lead author and team leader with the SRS Center for Forest Disturbance Science. Weather the day-to-day state of the atmosphere in a region influences individual fires within a fire season. In contrast when we talk about fire climate we're looking at the statistics of weather over a certain period. Fire climate sets atmospheric conditions for fire activity in longer time frames and larger geographic scales. Wildfires impact atmospheric conditions through emissions of gases particles water and heat. Some of the article focuses on radiative forcing from fire emissions. Radiative forcing refers to the change in net (down minus up) irradiance (solar plus longwave) at the tropopause the top of the troposphere where most weather takes place. Smoke particles can generate radiative forcing mainly through scattering and absorbing solar radiation (direct radiative forcing) and modifying the cloud droplet concentrations and lifetime and hence the cloud radiative properties (indirect radiative forcing). The change in radiation can cause further changes in global temperatures and precipitation. Wildfire emissions can have remarkable impacts on radiative forcing says Liu. During fire events or burning seasons smoke particles reduce overall solar radiation absorbed by the atmosphere at local and regional levels. At the global scale fire emissions of carbon dioxide contribute substantially to the global greenhouse effect. Other major findings covered in the synthesis include: Land surface changes may be triggered that also play into future effects. Wildfire is a disturbance of ecosystems says Liu. Besides the atmospheric impacts wildfires also modify terrestrial ecosystem services such as carbon sequestration soil fertility grazing value biodiversity and tourism. The effects can in turn trigger land use changes that in turn affect the atmosphere. The article concludes by outlining issues that lead to uncertainties in understanding fire-climate interactions and the future research needed to address them. Story Source: The above story is provided based on materials by USDA Forest Service#Southern Research Station. Note: Materials may be edited for content and length. Journal Reference r
Overtext Web Module V3.0 Alpha
Copyright Semantic-Knowledge, 1994-2011